
Predicting User-Perceived Quality Ratings from
Streaming Media Data

Amy Csizmar Dalal, David R. Musicant, Jamie Olson, Brandy McMenamy, Sami Benzaid, Ben Kazez, Erica Bolan
Department of Computer Science, Carleton College, Northfield, MN, USA

Email: {adalal,dmusican,olsonja,mcmenamb,benzaids,kazezb,bolane}@carleton.edu

Abstract—Media stream quality is highly dependent on under-
lying network conditions, but identifying scalable, unambiguous
metrics to discern the user-perceived quality of a media stream
in the face of network congestion is a challenging problem.
User-perceived quality can be approximated through the use of
carefully chosen application layer metrics, precluding the need to
poll users directly. We discuss the use of data mining prediction
techniques to analyze application layer metrics to determine user-
perceived quality ratings on media streams. We show that several
such prediction techniques are able to assign correct (within a
small tolerance) quality ratings to streams with a high degree of
accuracy. The time it takes to train and tune the predictors and
perform the actual prediction are short enough to make such a
strategy feasible to be executed in real time and on real computer
networks.

I. INTRODUCTION AND MOTIVATION

Assessing the quality of a media stream in a large-scale
computer network such as the Internet is a difficult problem.
While the congestion level on the network connecting a media
server and its media clients affects the quality of the stream
as seen by the end user, determining how exactly network
congestion manifests itself in degraded stream quality is still
an unsolved problem. Understanding the relationship between
stream quality and network congestion is an important step
to solving this problem, and can lead to better design of
streaming protocols, computer networks, and content delivery
systems.

In this context, we examine how network congestion affects
streaming media, audio and video data that is sent on demand
over a computer network from a single server to one or more
users and watched by these users as it is sent out. This type
of media traffic is most likely to be visually and audibly
affected by network congestion: there is a limited window at
the beginning of the stream in which congestion can be dealt
with somewhat effectively, and less desirable, more limited
means for dealing with network congestion once the stream is
in the middle of playback.

We are interested in how network congestion in particular,
among the many possible factors that affect stream quality,
manifests itself in the user-perceived or subjective quality of
a media stream. User-perceived stream quality indicates how a

This work was sponsored by a grant from the Howard Hughes Medical
Foundation and by Carleton College. Earlier portions of this work were
sponsored by Hewlett-Packard Laboratories.

user would rank the stream relative to other media streams that
he or she has seen in the past. Typically, the five-point scale
Mean Opinion Score (MOS) [1] is used to collect feedback
from end users on the subjective quality of a media stream.
The MOS does not scale well to a large number of users,
however, and it is somewhat ambiguous in that it does not
provide any context for users’ ratings.

A more practical approach involves discerning the user-
perceived quality of a media stream through objectively-
measured quantities, such as packet-level statistics, that can
be easily obtained and evaluated from either the underlying
computer network or the media player application itself. By
taking the measurements as close to the user as possible—at
the media player application—we can determine the quality
of a media stream in a more scalable and accurate fashion
than by polling the user directly. As we have shown previ-
ously in [2], we can utilize application layer measurements
to substitute for subjective quality ratings because subjective
ratings correlate highly with the usual indicators of congestion,
such as lost and retransmitted application layer packets. The
approach we use—instrumenting a media player application
to take application layer measurements—is most similar to the
approaches presented in [3]–[5]. The key difference between
previous work in this area and our approach is that we utilize
these objectively-obtained measurements to predict subjective
user quality ratings. If we can predict these ratings in a fast and
efficient manner, we can potentially employ this analysis in
real time and work to mitigate impending network congestion
conditions before they affect the user’s perceived quality of
the media stream.

Exploiting objectively-measured stream data to predict user-
perceived stream quality ratings resembles problems that are
classic data mining problems, and as such, we consider ap-
propriate algorithms for handling it. Most of the literature on
data mining of multimedia data examines a different prediction
problem, however: the focus is on mining the content of
the data, not the stream quality. A notable exception is [6],
which discusses the use of random neural networks to predict
the quality level of very short (ten second) streams, using
aggregated data from the stream. By comparing patterns within
the application layer metrics to user quality ratings for that
stream, we can understand the effects of network congestion
on user perception of stream quality. A simple approach

1-4244-0353-7/07/$25.00 ©2007 IEEE

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the ICC 2007 proceedings.

that we propose entails utilizing statistical information about
similar streams, and assigning ratings to streams based on their
similarities to past streams in these statistics. A second, more
sophisticated approach, exploits the fundamental time-series
nature of the streams, and thus uses a time-series similarity
metric (called dynamic time warping [7]) to determine an
appropriate rating for each stream. Both of these approaches
assign ratings to a stream based on streams similar to it, and
so both of these techniques are examples of nearest neighbor
predictors [8].

This work presents several key contributions. First, we
evaluate several prediction techniques on data obtained from
38 members of a small college community and determine
that these prediction techniques assign correct quality ratings,
within a small tolerance, to streams with a very high degree of
accuracy, typically in the 70-90% range. Second, we demon-
strate that there are multiple strategies for selecting the quality
rating estimate that work well in this context, and that there are
clear strategies that work well in specific circumstances that
are directly related to real-world scenarios such as video-on-
demand services. Finally, we show that the time it takes to train
and tune the predictor and to perform the actual prediction are
short enough (in the worst case, proportional to the length of
the stream) to make such a strategy feasible to be executed in
real time.

The measurement architecture and data collection mecha-
nisms are briefly described in Section II. Section III introduces
the strategies that our predictors use, along with the techniques
the predictors use to select the quality rating for the stream in
question. Section IV explains how we obtained our data sets;
the analysis of this data is described in Section V; and future
research directions are outlined in Section VI.

II. MEASUREMENT ARCHITECTURE

Collecting measurements at the network level gives us a
clear picture of current congestion conditions, either on a
global scale or on a particular network segment. However,
network-level metrics may not clearly indicate a user’s expe-
rience with a media stream. In particular, streaming media
applications often employ mechanisms such as aggressive
retransmissions or temporarily increasing the transmission rate
to several times higher than the normal transmission rate to
mitigate the effects of network congestion [9] . An alternative
is to take measurements from the media player application
itself. Doing so allows us to utilize objectively-obtained mea-
surements taken as close to the user as possible, without the
inherent scalability and ambiguity problems associated with
traditional subjective measurements.

In previous work [2], [10], we have identified a set of appli-
cation layer metrics that characterize the user-perceived quality
of a media stream. Two of these metrics, lost application layer
packets and retransmitted application layer packets, form the
basis for our analysis here. Lost application layer packets
are data packets that either never arrive at the media player
application, or arrive after their play-out window has expired.
Retransmitted application layer packets are data packets that

arrive in time to be rendered by the media player, but do
not arrive within their initial delivery window. For simplicity,
we refer to these metrics as “lost packets” and “retransmitted
packets” throughout the rest of this paper. Lost packets are
instantaneous indicators of stream quality, while retransmitted
packets are leading indicators of stream quality. The former
appears at the exact moment that the quality of a media stream
degrades, while the latter precedes periods of reduced stream
quality.

Collecting data at the application layer requires us to poll
the media player application for current state information
about a stream. In [10], we describe a measurement tool
that leverages the existing installed media player software on
a user’s machine, without requiring the modification of the
media player. Our tool consists of a plug-in that interfaces
directly to the installed media player on the client—in this
case, Windows Media Player. The plug-in uses ActiveX hooks
to query the media player at uniform (one second) intervals
about the current state of a stream. Polling the player at one
second intervals allows us to receive timely information about
a media stream without overwhelming the data collection
mechanism. The amount of data, for instance, collected for a
thirty second stream is about 1200 bytes. The interval duration
was chosen via experimentation. The collected data is then
logged for later off-line analysis.

Figure 1 is an example of the data collected by our tool
for a stream several minutes in duration that experiences
a moderate level of network congestion. In this plot, the
“received packets” are the data packets that arrive at the media
player application within their initial delivery window. The
plot shows the number of retransmitted packets increasing well
before the number of lost packets increases. This demonstrates
that the media player’s first response to network congestion
is to request that the media server resend missing packets,
and that packets are only declared lost once the player has
unsuccessfully received these packets.

Fig. 1. Time-series packet data collected by the instrumented media player
application.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the ICC 2007 proceedings.

III. METHODS FOR PREDICTING AND EVALUATING

STREAM QUALITY

A major goal of this study is to determine the user-
perceived quality of media streams solely on the basis of
state information gathered from a media player application
and on knowledge of how similar streams were rated by past
users under similar conditions. This is precisely the kind of
problem addressed by the field of data mining. Given that data
mining as a field focuses heavily on bringing techniques from
computer science and statistics together for the purposes of
understanding patterns in data, it is only natural to leverage
tools from the data mining community for handling this task.

Our particular problem calls for using knowledge of pre-
labeled data to predict labels on new data [8], [11], [12]. The
goal is to produce a predictor by “training,” i.e. running a
data mining algorithm, on a set of labeled data referred to as
a training set. The predictor that is then produced can be tested
on unlabeled data. We focus on “nearest neighbor” algorithms
[8], [11], [12], which are simple and straightforward. Despite
their simplicity, however, nearest neighbor techniques are
remarkably effective at finding accurate predictions, and are
often used in the data mining community as a barometer
of success to which to compare proposed new prediction
algorithms.

The idea behind a nearest neighbor predictor is as follows.
For an unlabeled example (stream), locate all of the examples
in the training set which are the “nearest neighbors” to the
unlabeled example, subject to some distance metric. To assign
a label to the unlabeled example, a single label is produced
from the set of labels for the nearest neighbors.

In our data, the distance metric is computed from one
or more measurements collected from the media player. The
labels in this case are the user quality ratings assigned to each
stream. Our predictors work as follows: given an “unrated”
stream, determine this stream’s nearest neighbor using only
data collected from the media player. Once a nearest neighbor
stream has been identified, assign that stream’s rating to the
unrated stream.

“Nearest neighbor” is technically a family of algorithms,
because a number of factors can vary: the distance metric
used; the tolerance within which samples are considered to
be “nearest neighbors”; and the method of reconciling nearest
neighbors with conflicting labels. In this work, we focus
on two distinct distance metrics. The first distance metric
simply focuses on a summary statistic collected from the
media player. For the second distance metric, we use the more
complex technique of dynamic time warping [7].

A. Distance Metric #1: Summary Statistics

One simple approach for measuring similarity between
streams is to produce a small set of characteristic numbers that
describe each stream, then observe how similar these numbers
are between streams. We have demonstrated previously [2] that
the percentage of lost packets and the percentage of retrans-
mitted packets provide important clues as to how users rate
the quality of a particular stream. Combined, these two metrics

give us a close approximation of the amount of packet loss on
the underlying computer network. Therefore, for each stream
under consideration, we calculate the sum of lost packets and
retransmitted packets and divide it by the total number of
packets for that stream. We refer to this percentage as the
summary statistic for that stream. Given an unrated stream
with its own summary statistic, then, its nearest neighbor is
the stream in the training set with the closest summary statistic.
In the case of ties, which are fairly common since we round
the summary statistic to the nearest integer, we include all of
these streams in the set of nearest neighbors. For example, if
our training set consists of streams with summary statistics of
{10%, 10%, 13%, 25%, and 25%}, and the summary statistic
of the unrated stream is 11%, then the nearest neighbors are
the two streams with summary statistics of 10%. This approach
is an example of a one-nearest neighbor predictor in which
all ties are counted as a single neighbor.

Having now produced a distance metric and a technique
for determining which metric is close enough, we determine a
single rating (label) for a stream based on the ratings (labels)
contributed by the set of nearest neighbors. We consider
three reconciliation techniques. The mean predictor averages
all of the ratings given to streams in the set of nearest
neighbors to produce a rating for the unlabeled stream. The
median predictor does the same thing as the mean predictor,
except that it computes the median rating. Finally, the mode
predictor chooses the most commonly-occurring rating in the
set of nearest neighbors. If there are multiple modes, the first
occurrence is chosen; if no mode exists, the smallest rating is
selected.

B. Distance Metric #2: Dynamic Time Warping

The state information that is gathered from the media player
is an example of a time series, a collection of observations
made sequentially in time [13]. The above summary statistics
methodology aggregates data over the entire stream, removing
all time characteristics from it. The technique we present here
exploits the time-series nature of the media streams.

Dynamic time warping (DTW) is a generalization of Eu-
clidean distance designed for use with time series data. It
has been shown to result in a highly effective predictor for
time series when coupled with nearest neighbor predictors [7].
DTW is based on the assumption that two time series may be
quite similar, even if the precise timing between the two series
is misaligned. Instead of using a direct point-to-point (second-
to-second) matching as Euclidean distance does, DTW allows
time along both series to shift. While DTW aligns the start
and end points of each stream, it allows points in mid-stream
to align with the closest appropriate point. This fluidity often
results in more accurate predictions and pattern identifications.
The approach we use involves an extension to DTW [14] that
facilitates its use on multidimensional time series, similar to
our data. In this experiment, our data set has two dimensions:
lost packets and retransmitted packets.

DTW is an appropriate distance metric for use in con-
junction with a multimedia stream quality predictor. When

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the ICC 2007 proceedings.

presented with a stream of unknown quality, the goal is to
compare it to other streams of known quality to find examples
of similar behavior. A stream of unknown quality that exhibits
packet loss on a periodic basis, for example, is expected to
have similar quality to another stream that also loses packets
periodically. However, it should not be a requirement for
similarity between such streams that the packet losses occur
at precisely identical times. DTW allows fluidity in comparing
two streams so as to match similar behavior between streams
that may not occur simultaneously in reality. We do not claim
that DTW is theoretically optimal, but we demonstrate later
in this paper that it has a positive impact on prediction rates.

One drawback of dynamic time warping is its running time:
its complexity is quadratic in the length of the time series. We
can reduce the complexity by limiting the warping window, or
the amount of “backtracking” allowed between time series. We
use the popular Sakoe-Chiba band [7], [15], which limits the
distance that one time series can shift relative to the other to
a maximum of w time units, where w, the “warping window
size”, is a user-defined parameter. Additionally, practice has
shown [16] that a warping window of appropriate size can
improve accuracy in some cases because it can help avoid
“pathological warpings,” [7] when most of one time series
matches up with a very small portion of the other time series.

To integrate DTW into a nearest neighbor predictor, we
define the set of nearest neighbors to be the K neighbors
which are closest, where K is determined experimentally (see
Section IV). Choosing nearest neighbors in this fashion results
in a K-nearest neighbor predictor [8], [11], [12].

Since DTW is relatively slow to calculate, even with the
use of a warping window, we consider the use of optimization
techniques for quickly determining a candidate set of nearest
neighbors. We therefore use Keogh minimum bounds [7],
which provide a fast approximation of the lower bound of the
DTW distance between two streams. These minimum bounds
are then used to determine for each stream whether or not it
is a candidate nearest neighbor. If the Keogh minimum bound
for a candidate nearest neighbor is greater than the largest
distance for a collection of K streams where the actual DTW
distance is already known, the DTW distance for the candidate
is not calculated.

Once the set of candidate streams has been selected, the
predictor produces a single rating by calculating the mean of
the ratings given to the candidate streams. For the rest of this
paper, we refer to this predictor as the DTW predictor.

IV. EXPERIMENTAL SETUP

In this section, we describe the experiments in which we
collected our data. The experiments are a larger version, with
slight modifications, of those presented in [2]. In addition,
we define hit rate as the metric by which we evaluate the
effectiveness of the predictors under consideration. Finally, we
describe the experimental procedure used to select appropriate
parameters for the predictors.

A. Measurements

Our data collection testbed consists of a set of 14 client
machines on a subnet of a small campus network, and a media
server on a separate, isolated subnet. The media server is
separated from the rest of the campus network by two routers;
the router closest to the server runs NIST Net [17] software.
NIST Net was used to apply randomly-distributed packet
losses, over the duration of each stream, at the percentages
indicated in Table I; there was no additional delay or delay
jitter applied to the network by NIST Net. The media server
is a 2.4 GHz Pentium processor machine with 512 MB of
RAM, running Windows Server 2003 and Windows Media
Server 2003 software. The media server sends streams using
RTSP over UDP. The NIST Net router is a 700 MHz processor
machine with 512 MB of RAM, running Linux kernel 2.4.21-
27 and NIST Net version 2.0.12. The client machines have 3.4
GHz Pentium processors and 1 GB of RAM and run Windows
XP SP2 and Windows Media Player version 10. Before and
during the experiments, we took periodic measurements on
the campus network of network packet loss rates, network
packet delays, and throughput. Based on these measurements,
we found negligible levels of loss and delay on the campus
network. Thus, it was not necessary to isolate the client
machines in addition to isolating the media server. In addition,
we performed a series of tests on the router to verify that it
was not inadvertently serving as a bottleneck on our testbed
network, and that it could easily support the amount of traffic
necessary to send media streams to the set of clients.

Table I lists the streams used in this study and the network
congestion levels used in the experiments. The congestion lev-
els, which we determined experimentally, are higher than those
typically seen in computer networks, for two reasons. First, we
had to overcome the mechanisms that Windows Media Player
uses to mitigate the effects of network congestion [9]. Second,
we designed the loss levels to affect the media experience in
an obvious fashion that influences the streams in the same
manner each time. For instance, mild loss is characterized by
infrequent short audio and/or visual jitters or freezes; moderate
loss causes occasional audio and/or picture freezes, usually one
to five seconds in length; and severe loss results in frequent
audio and/or visual freezes of one to ten seconds in duration.

We collected stream data and quality assessments using
a larger version of the procedure described in [2], in a set
of three experiments carried out over a period of two days
in May, 2006. In each experiment, we showed a group of
college-age (and several slightly older) participants each of
three media streams twice, once with no loss and once with
either mild, moderate, or severe loss. The participants were not
aware of the loss levels shown to them for a particular stream;
they also were not told which version of the stream had no
loss introduced. The participants rated the audio, video, and
overall quality of each stream on a seven-point scale, which
allows for slightly finer granularity in participant responses,
with one being the worst possible quality and seven being
the best possible quality. The measurement tool collected data

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the ICC 2007 proceedings.

from each stream simultaneously. We randomized the network
congestion patterns introduced to each participant such that at
least six participants saw the exact same loss levels for the
exact same streams, though not necessarily at the same time.
From these experiments, we collected data from a total of 38
participants and their respective client machines.

B. Performance Evaluation

Because user quality ratings are subjective by nature, and
because there is significant variation in how particular users
rate streams, we measure prediction accuracy by a hit rate
metric, where hit rate is the percentage of time a prediction
falls within 0.8 standard deviations of the user’s normalized
rating for that stream. This corresponds to approximately plus
or minus one point on the seven-point scale.1 A normalized
rating is calculated by the formula rnorm,s = rs−r̄

σr
, where

rs is the user’s quality rating for stream s, r̄ is the average
of the user’s quality ratings on all streams viewed, and σr

is the standard deviation of the user’s quality ratings on all
streams viewed [18]. Figure 2 plots the cumulative distribution
function of the normalized user quality ratings for all users for
overall stream quality, the quality rating (label) used by the
predictors. The plot illustrates the distribution of user ratings in
terms of how the ratings for streams exposed to the different
congestion levels deviate from the users’ “average” quality
ratings for all streams. The plot shows that our user population
was clearly able to distinguish between the different loss levels
in the streams, even though they had no knowledge of what
loss level the streams they were viewing were experiencing.

Fig. 2. CDFs of normalized user quality ratings for all viewed streams,
broken down by network congestion level.

C. Tuning Predictor Parameters

Preparing predictors to be used on a set of test data is a
two step process. The first step, training, consists of reading

1The factors that affect user ratings can vary significantly. Users may be
more or less sensitive to encoding differences between streams, or they may
view a stream that experiences more apparent loss due to which frames are
dropped by the router. Normalizing user ratings helps mitigate these factors,
by basing ratings on the biases of the particular user in question.

in and storing the data appropriately. In this context, the
training phase consists of reading in the state information
for the entire stream, and then either storing the lost and
retransmitted packets for each second of the stream (the DTW
predictor) or calculating and storing the summary statistic
(the mean, median, and mode predictors). The second step,
tuning, consists of selecting the proper parameters for the
predictor. For the DTW predictor, the tuning phase consists
of setting two parameters: K, the number of neighbors to use
for predicting the quality of a stream, and w, the width of the
Sakoe-Chiba warping window. The other predictors—mean,
median, and mode—are fixed parameter predictors, and thus
do not undergo a tuning phase. For the rest of this paper, we
use “training” to refer to the combined “training and tuning”
steps associated with a predictor.

To tune the DTW predictor, we determined optimal val-
ues for K and w experimentally via a leave-one-out cross-
validation procedure on each training set. In a training set
containing n streams, we removed one stream and predicted
a rating for it using the remaining n− 1 training streams as a
proxy training set, varying K and w between 1 and 20 and 0
and 30, respectively, in the process.2 For each value of K and
w, we recorded whether or not the stream was rated correctly
within a tolerance of 0.8, as discussed in Section IV-B. We
repeated this procedure for each stream in the training set and
selected the K and w values that yielded the highest hit rate
overall. Ties were broken by selecting the K and w values
with the smallest execution times, and then by selecting the
smallest w value. These K and w values were then used
as predictor inputs for the test sets. Since this entire cross-
validation process is done purely on the training data, it does
not in any way use information from the streams whose quality
we wish to predict.

The summary-statistics predictors were all trained in the
same manner: For each stream in the training set, the summary
statistic, as defined in Section III-A, was computed. The sum-
mary statistics and associated stream ratings were compiled
into a lookup table. In the testing phase, the prediction consists
of a simple lookup in this table.

V. RESULTS

In evaluating the effectiveness of the predictors under con-
sideration, we are first and foremost interested in the hit rate of
each predictor, as defined in Section IV-B. However, if we are
to utilize these predictors in real time, which is our ultimate
goal, then we need to also evaluate the time requirements for
each predictor. We discuss each of these performance issues
below.

A. Predictor Hit Rates

The first six columns of Table II show the hit rates for the
different predictors when assigning overall user quality ratings.
The bold values in the table show the highest hit rate achieved
for the set of training and testing data among the predictors.

2Note that w = 0 is equivalent to traditional Euclidean distance.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the ICC 2007 proceedings.

TABLE I
DESCRIPTION OF TEST STREAMS AND CONGESTION PATTERNS

Stream information Network congestion level (loss)
Name Time (mm:ss) Description BW (kbps) Mild Moderate Severe
Commercial 0:30 Moderate action 273 5% 15% 25%
Movie trailer 2:22 High action 273 5% 15% 25%
News 4:09 Low/moderate action 331 5% 15% 25%

The values along the diagonal for each predictor indicate the
accuracy via cross-validation, as described in Section IV-C.
Because the mean predictor produced consistently poor results,
with hit rates typically below 60%, we omit its results here.

The cross-validated results show how each predictor would
perform when rating an unknown stream of similar length and
characteristics, or an unlabeled stream identical to the streams
in the training set. This is useful in a scenario such as a
video-on-demand system, in which the set of available streams
is known completely in advance by the content provider. In
such a system, predictors could be trained on each stream
in advance, and the appropriate training set selected by the
predictor once the user makes his or her selection. In this
scenario, the DTW predictor achieves very high hit rates of
88-90%, with the median predictor coming in second with
hit rates of 82-83%. The mode predictor does not do as well
under cross-validation as the other two predictors. When rating
streams that are very similar to the streams in the training set,
then, the DTW predictor is clearly the strongest choice.

The results for the off-diagonal experiments are more varied.
In these cases, the DTW predictor has the highest hit rate when
the shortest stream (commercial) is used as the training stream
to predict ratings for the longer streams (trailer and news); the
worst performance occurs when either of the longer streams
(trailer or news) is used to predict the rating for the shortest
stream (commercial). This is an artifact of DTW: we in essence
“compact” the longer stream to match the shorter stream.
A short stream with the same congestion level as a longer
stream will often show very different behavior: for instance,
packet losses and retransmissions are concentrated into smaller
portions of a shorter stream, whereas in a longer stream the
packet losses would be spread out over the duration of the
stream. Thus, key cues may be missed by the predictor. Using
a shorter training stream, such as the commercial, mitigates
this performance issue.

Both the median and mode predictors clearly outperform the
DTW predictor when either the movie trailer or news clip is
used to predict the ratings for the commercial stream. For the
other off-diagonal experiments, results are mixed. However, if
we rank each of these predictors from 1-3, with 1 indicating
the predictor that yields the highest hit rate and 3 the lowest,
for each experiment, we find that the DTW predictor still ranks
first the majority of the time, in five of the nine experiments.
The median predictor is a good alternate choice: it ranks first
in two experiments, and second in five experiments. The mode
predictor is the least desirable alternative, since it ranks third
in five of the nine experiments and ranks first in only two
experiments.

In summary, the DTW predictor is the clear choice under
cross-validation and when the shortest stream is used to
predict the ratings of the two longer streams. The median
is a good alternative to the DTW predictor, particularly in
the remaining off-diagonal streams. Because of the mode
predictor’s variability and low ranking compared to the other
two predictors, it is less desirable in this environment.

Table II also shows the K and w parameters that were
determined in the training stage of the predictor algorithm,
as described in Section IV-C. Note that a window size of ∞
indicates that the best parameter choice for this experiment
was to allow the points to match up freely, with no warping
window imposed. There was no clear relationship between the
choices for K and w and the resulting hit rate for the DTW
predictor in the training phase. The hit rate across all values
of K and w was highest, in general, for the cross-validated
data sets: the range was about 75% to about 88% for all three
experiments. To determine the range of hit rates for the non-
cross validated data, we ran the DTW predictor on all of the
test data for all possible values of K and w, not just the chosen
parameter values. In the off-diagonal experiments, the hit rate
percentages over all K and w values typically ranged from the
low 60s to the low 80s. These results demonstrate that there is
a large range of K and w parameter values that would yield
acceptably high hit rates when used by the DTW predictor.3

B. Predictor Running Time

An important consideration in evaluating the efficacy of
these predictors in a real-time environment is the running time
of each predictor. The running time of a predictor is composed
of its training time and its execution time. The training time
is the time required for the predictor to execute its training
phase as described in Section IV-C. The execution time is the
time required for the predictor to assign a quality rating to a
stream of unknown quality level. Because of the nature of the
training phase, we expect the training time to dominate the
predictor’s running time, particularly for the DTW predictor.

We ran our timing experiments on a 3.0 GHz Pentium 4
machine with 1 GB of RAM, running RedHat Enterprise Linux
AS 4 and Java 1.5.0 04-b05. The last four columns of Table
II list the training times and execution times for each predictor
on each of the training sets and test sets. The training times
for each of the summary statistics predictors are identical,
since training these predictors entails constructing a table of
summary statistics and quality ratings. As expected, training
time increases with the duration of the training stream for all

3We emphasize that the results presented in Table II use values of K and
w chosen without knowledge of the streams used for testing.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the ICC 2007 proceedings.

TABLE II
USER QUALITY RATING HIT RATES (PERCENTAGE OF PREDICTIONS WITHIN ±0.8 OF ACTUAL NORMALIZED USER QUALITY RATING), TRAINING TIMES,

AND TESTING TIMES FOR EACH PREDICTOR. THE BEST QUALITY RATING HIT RATES FOR EACH TRAINING/TEST SET ARE IN BOLD.

Hit Rate Timing
Testing Testing time (ns)

Predictor Training Commercial Trailer News Details Training Commercial Trailer News
DTW Commercial 88.2 79.0 77.6 K = 6, w = 1 24 s 2000 2000 4000

Trailer 64.5 89.5 81.6 K = 12, w = 3 3 min 35 s 4000 3000 4000
News 67.1 76.3 88.2 K = 14, w = ∞ 14 min 45 s 3000 3000 4000

Median Commercial 81.6 75.0 73.7 294 ms 106 359 601
Trailer 77.6 82.9 84.2 n/a 494 ms 80 302 489
News 76.3 71.1 81.6 835 ms 84 297 486

Mode Commercial 68.4 73.7 76.3 294 ms 106 361 609
Trailer 78.9 75.0 80.3 n/a 494 ms 79 304 494
News 71.1 80.3 68.4 835 ms 84 318 507

of the predictors under consideration; also as expected, the
training time for the DTW predictor is considerably longer
than that of the summary-statistics predictors. However, even
in the worst case, the training time for the DTW predictor is
under fifteen minutes, or roughly four times the duration of
the longest training stream. As we saw earlier, we get highly
accurate results with the DTW predictor by training on shorter
streams, cutting down the training time for the DTW predictor
considerably—in the case of the movie trailer, to about one and
a half times the length of the stream. Since the training phase
would still occur off-line, a delay of this size is acceptable
even in a real-time environment.

The execution time, as measured by our timing experiments,
is extremely fast—on the order of hundreds or thousands of
nanoseconds. The negligibly small execution times, combined
with off-line training times on the order of minutes at worst,
mean that all of the predictors described here are potentially
good candidates for use in a real-time analysis environment.

By monitoring the user-perceived quality rating in real time,
network providers can determine whether quality-of-service
(QoS) guarantees are being met for different customers, and
adjust network and possibly server resources accordingly,
perhaps even mitigating problems before they fully develop.
Content providers can utilize such measurements to determine
if their content is being seen by the users as intended, and
whether their content is being effectively transmitted over
computer networks. Finally, content distributors can utilize
such information to deploy servers and repeaters in the lo-
cations where they are most needed, switch content serving to
less-loaded areas of the network, and employ other strategies
to ensure that the end users receive media streams at an ac-
ceptable quality level. We are currently studying the feasibility
of such approaches in real-world computer networks.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we have demonstrated that several types of
predictors that employ several different distance metrics—
summary statistics and dynamic time warping—based on
objectively-measured application-layer metrics, are able to
predict with a high rate of accuracy the quality rating that
a user would assign to a media stream. In addition, we
have demonstrated that one particular predictor that employs

dynamic time warping as a distance metric is highly accurate
in predicting the quality rating assigned to an unlabeled stream
when its training set consists of the same stream—which
would, for instance, be particularly useful in a video-on-
demand system. In other cases, there are several predictors—
employing dynamic time warping, and also employing sum-
mary statistics and breaking ties by calculating the median of
all the nearest neighbor ratings—that can predict user ratings
on our data with a high degree of accuracy. This demonstrates
the potential for this type of prediction system to be used in
a more general streaming environment, in which users may
access streams from sources that are not known a priori. We
have shown on a preliminary basis that all of the predictors
studied are potentially viable for use in a real-time prediction
environment, because their training times are at worst on the
order of minutes and the actual prediction time is on the order
of at worst thousands of nanoseconds.

There are several natural extensions to this study that we are
currently actively pursuing. Employing these predictors in the
real-time analysis of stream data is of paramount interest to
us. To do so, a closer analysis of training and execution times
of the predictors is necessary. Studying additional refinements
to the predictors in general, and to the predictor that employs
dynamic time warping in particular, may unearth strategies that
the predictor can use to either increase hit rate or decrease
training time, or both. For instance, varying the number of
streams in the training set may have an effect on the hit rates
of the DTW predictor; in particular, perhaps increasing the
number of streams in the training set may improve the hit rate
of the DTW predictor when using a long stream to predict the
quality rating on a much shorter stream. In moving towards
realistic real-time prediction of media stream quality, we are
studying the prediction of quality ratings from partial stream
data. In particular, we are studying how representative a quality
rating assigned to an entire stream is of a piece of that stream,
and determining if there are portions of a stream that are
more representative than others (the middle, for instance, as
opposed to closer to the start or end of the stream). Finally,
we have demonstrated the viability of this approach using
a tool developed for one particular media player application
(Windows Media Player). A natural extension to this work
would entail expanding this measurement tool to different

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the ICC 2007 proceedings.

media player applications, such as Apple’s QuickTime player
and Real Network’s Real Player.

REFERENCES

[1] ITU-T Recommendation P.910, “Subjective video quality assessment
methods for multimedia applications,” Recommendations of the ITU,
Telecommunications Sector.

[2] A. Csizmar Dalal and K. Purrington, “Discerning user-perceived media
stream quality through application-layer measurements,” in Proceedings
of the First International Conference on Multimedia Services Access
Networks, Orlando, Florida, June 2005.

[3] Y. Wang and M. Claypool, “RealTracer - tools for measuring the
performance of RealVideo on the internet,” Kluwer Multimedia Tools
and Applications, vol. 27, no. 3, December 2005.

[4] D. Loguinov and H. Radha, “Measurement study of low-bitrate Internet
video streaming,” in Proceedings of ACM SIGCOMM Internet Measure-
ment Workshop, San Francisco, CA, November 2001.

[5] P. Calyam, M. Sridharan, W. Mandrawa, and P. Schopis, “Performance
measurement and analysis of H.323 traffic,” in Proceedings of the
2004 Passive and Active Measurement Workshop, Antibes Juan-les-Pins,
France, April 2004.

[6] S. Mohamed and G. Rubino, “A study of real-time packet video quality
using random neural networks,” IEEE Transactions on Circuits and
Systems for Video Technology, vol. 12, no. 12, pp. 1071–1083, 2002.

[7] E. Keogh and C. Ratanamahatana, “Exact indexing of dynamic time
warping,” in Proceedings of the 28th International Conference on Very
Large Databases, Hong Kong, China, 2002, pp. 406–417.

[8] M. H. Dunham, Data Mining: Introductory and Advanced Topics,
Prentice Hall, August 2002.

[9] J. Nichols, M. Claypool, R. Kinicki, and M. Li, “Measurement
of the congestion responsiveness of Windows streaming media,” in
Proceedings of NOSSDAV, Kinsdale, Ireland, June 2004.

[10] A. Csizmar Dalal and E. Perry, “A new architecture for measuring and
assessing streaming media quality,” in Proceedings of the Workshop
on Passive and Active Measurements (PAM 2003), La Jolla, CA, April
2003.

[11] D. Hand, H. Mannila, and P. Smyth, Principles of Data Mining, MIT
Press, Cambridge, MA, 2001.

[12] P. Tan, M. Steinbach, and V. Kumar, Introduction to Data Mining,
Addison-Wesley, May 2005.

[13] E. Keogh, “Data mining and machine learning in time series databases,”
Tutorial presented at KDD 2004, Seattle, WA.

[14] M. Vlachos, M. Hadjieleftheriou, D. Gunopulos, and E. Keogh, “In-
dexing multi-dimensional time-series with support for multiple distance
measures,” in KDD ’03, New York, NY, USA, 2003, pp. 216–225, ACM
Press.

[15] H. Sakoe and S. Chiba, “Dynamic programming algorithm optimization
for spoken word recognition,” IEEE Trans Acoustics Speech Signal
Process, vol. 26, pp. 43–49, 1978.

[16] C. A. Ratanamahatana and E. Keogh, “Everything you know about
dynamic time warping is wrong,” in Third Workshop on Mining
Temporal and Sequential Data, in conjunction with KDD’04, Seattle,
WA, August 2004.

[17] M. Carson and D. Santay, “NIST Net: a Linux-based network emulation
tool,” SIGCOMM Comput. Commun. Rev., vol. 33, no. 3, pp. 111–126,
2003.

[18] J. S. Breese, D. Heckerman, and C. Kadie, “Empirical analysis of
predictive algorithms for collaborative filtering,” in Proceedings of the
Fourteenth Annual Conference on Uncertainty in Artificial Intelligence,
July 1998, pp. 43–52.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the ICC 2007 proceedings.

	Select a link below
	Return to Main Menu

